Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(5): e2305126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37735144

RESUMEN

It is always challenging to integrate multiple functions into one material system. However, those materials/devices will address society's critical global challenges and technological demands if achieved with innovative design strategies and engineering. Here, one such material with a broader spectrum of desired properties appropriate for seven applications is identified and explored, and a glucose-sensing-triggered energy-storage mechanism is demonstrated. To date, the Titanium (Ti)-Zinc (Zn) binary alloys are investigated only as mixed phases and for a maximum of three applications. In contrast, the novel single phase of structurally stable 50 Ti-50 Zn (Ti0.5 Zn0.5 ) is synthesized and proven suitable for seven emerging applications. Interestingly, it is thermally stable up to 750 °C and possesses excellent mechanical, tribological properties and corrosion resistance. While exceptional biocompatibility is evident even up to a concentration of 500 µg mL-1 , the antibacterial activity against E. coli is also seen. Further, rapid detection and superior selectivity for glucose, along with supercabattery behavior, unambiguously demonstrate that this novel monophase is a remarkable multifunctional material than the existing mixed-phase Ti-Zn compounds. The coin-cell supercapacitor shows outstanding stability up to 30 000 cycles with >100% retention capacity. This allows us to prototype a glucose-sensing-triggered energy-storage-device system for wearable point-of-care diagnostic applications.

2.
Chemosphere ; 346: 140517, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37879374

RESUMEN

We report a facile one-pot synthesis of bimetallic nickel-gold (Ni-Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized glutathione (GSSG) by electrochemical deposition on fluorine doped tin oxide (FTO) substrate. The electrodeposition of Ni-Au nanocomposite on FTO was confirmed by various characterization techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR) spectroscopy. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was utilized for the electrochemical characterization of glutathione reductase (GR)/Ni-Au/FTO working electrode at each stage of modification. The GR enzyme immobilized on the Ni-Au/FTO working electrode via glutaraldehyde cross-linking exhibited excellent selectivity against GSSG in the presence of nicotinamide adenine dinucleotide phosphate (NADPH). The immobilized GR enzyme breaks down the GSSG to reduced glutathione (GSH) and converting NADPH to NADP+ whereby generating an electron for the electrochemical sensing of GSSG. The synergistic behavior of bimetals and good electro-catalytic property of the fabricated sensor provided a broad linear detection range from 1 fM to 1 µM with a limit of detection (LOD) of 6.8 fM, limit of quantification (LOQ) of 20.41 fM and sensitivity of 0.024 mA/µM/cm2. The interference with other molecules such as dopamine, glycine, ascorbic acid, uric acid and glucose was found to be negligible due to the better selectivity of GR enzyme towards GSSG. The shelf-life and response time of the fabricated electrode was found to be 30 days and 32 s, respectively. The real sample analysis of GSSG in whole blood samples showed average recovery percentage from 95 to 101% which matched well with the standard calibration plot of the fabricated sensor with relative standard deviation (RSD) below 10%.


Asunto(s)
Grafito , Nanocompuestos , Disulfuro de Glutatión , NADP , Nanocompuestos/química , Glutatión , Límite de Detección , Enzimas Inmovilizadas , Electrodos , Técnicas Electroquímicas/métodos , Grafito/química
3.
Chemosphere ; 342: 140124, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37709058

RESUMEN

We report a simple and easy method to synthesize Ag nanoparticles (Ag NPs) and demonstrate its potential for the detection of glutathione (GSH) and dopamine (DA) via colorimetric assay. The Ag NPs were found to be monodispersed and spherical with a size of 5 ± 2 nm. The X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM) investigations revealed the formation of crystalline Ag NPs. The colour of N, N-dimethyl-p-phenylenediamine assay changed from dark pink to colourless when the concentration of GSH was increased from 1 to 40 µM. Notably, the suspension colour changed from dark pink to blue when a similar set of experiments were performed with DA. The UV/Visible and interference experiments of Ag NPs exhibited excellent sensitivity and selectivity against both GSH and DA even after the addition of 40 µM of different interference biomolecules. The calculated limit of detection (LOD) was 141 and 245 nM for GSH and DA, respectively. The real-time analysis with serum samples showed satisfactory recovery percentages of >95 and 80-90% for GSH and DA, respectively. Hence, the Ag NPs reported here have huge potential to serve as a sensitive and selective colorimetric sensor for the detection of GSH and DA for diverse applications ranging from catalysis to cancer therapy and theranostics.

4.
Int J Biol Macromol ; 193(Pt B): 1165-1200, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34710479

RESUMEN

Today, the world population is facing an existential threat by an invisible enemy known as severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) or COVID-19. It is highly contagious and has infected a larger fraction of human population across the globe on various routes of transmission. The detailed knowledge of the SARS-CoV-2 structure and clinical aspects offers an important insight into the evolution of infection, disease progression and helps in executing the different therapies effectively. Herein, we have discussed in detail about the genome structure of SARS-CoV-2 and its role in the proteomic rational spread of different muted species and pathogenesis in infecting the host cells. The mechanisms behind the viral outbreak and its immune response, the availability of existing diagnostics techniques, the treatment efficacy of repurposed drugs and the emerging vaccine trials for the SARS-CoV-2 outbreak also have been highlighted. Furthermore, the possible antiviral effects of various herbal products and their extracted molecules in inhibiting SARS-CoV-2 replication and cellular entry are also reported. Finally, we conclude our opinion on current challenges involved in the drug development, bulk production of drug/vaccines and their storage requirements, logistical procedures and limitations related to dosage trials for larger population.


Asunto(s)
Antivirales/uso terapéutico , Vacunas contra la COVID-19/uso terapéutico , COVID-19 , Brotes de Enfermedades , Desarrollo de Medicamentos , SARS-CoV-2 , Vacunación , COVID-19/epidemiología , COVID-19/fisiopatología , COVID-19/terapia , COVID-19/transmisión , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...